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MATHEMATICAL ANALYSIS OF A MULTIPLE-LOOK CONCEPT IDENTIFICATION MODEL

John W. Cotton

University of California, Santa Barbara

Abstract

The behavior of focus samples central to the multiple-look model of

Trabasso and Bower (1968) is examined by three methods. First, exact

probabilities of success conditional upon, a certain brief history of

stimulation are determined. Second, possible states of the organism during

the experiment are defined awl a transition matrix for those states deter-

mined, permitting prediction over all possible numbers of trials. Third,

Fisher's generalizations and corrections of the Trabasso and Bower focus

sample theory are examined. A general solution for the conditional

probability of success is derived from Fisher's equation for the proba-

bility of n successes between any two errors. One very strong implica-

tion of the theory is given in Section 5.
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MATHEMATICAL ANALYSIS OF A MULTIPLE-LOOK CONCEPT IDENTIFICATION MODEL

1. Introduction

Consider a K -dimensional binary response concept identification task

with one or more dimensions being relevant. A possible solution of the

task might be that a stimulus including value 1 of dimension A (A1) should

be followed by Response 1 (R1) and that A2 should be followed by R2 .

Thus A is a relevant dimension. We require that with more than one

relevant dimension all such dimensions give redundant information. Thus,

in addition to our assumption about dimension A , we might assume that B1

must be followed by R1 , B2 must be followed by R2 , and that presenta-

tion of Al (A2)\ always implies presentation of B1 (B2) . Thus B is

also a relevant dimension. Trabasso and Bower (1968, pp. 54-57) present a

model for a focus sample of x relevant and s x irrelevant cues to

which a person may attend on any trial. The focus sample is a crucial part

of a multiple look model because it permits the learner to attend to more

than one conceivably crucial cue on any one trial, with a subsequent reduc-

tion in the number thus noted as new trials give new information.

Trabasso and Bower (1968, p. 54) note that a random sequence of stimulus

patterns implies that "each irrelevant cue will have an independent probabil-

ity p on each trial of being allied with the correct, relevant one."

Furthermore, "the probability of the correct response is the proportion of

cues in the focus sample that dictate that response." A cue is a dimension

value, not a dimension.

Trabasso and Bower begin their derivation by assuming an error on an

arbitrarily numbered trial, . At this point the learner selects s cues,
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all of which are consistent with the information from T
0

. Let (s) denote

the set of such elements, with the convention that we list dimension values

which evoke R1, opposite values evoking R2 . Thus, if on To Allyl

should have led to R
1

, (A B C
1
) is an acceptable set (s) for s = 3 .

Trabasso and Bower also permit focus samples in which the same cue appears

more than once. For example, (s) = (B B C
1

is also acceptable in this

instance.

On the next trial, Tl Trabasso and Bower predict the following pro-

portion of successes:

Fr(silEo) x += x (s x)
(s - x

(1)

because x plus p(s - x) is the expected number of cues yielding a correct

response, and x + (s - x) = s is the total number of cues from which selec-

tion is being made. On subsequent trials in a series of successful trials,

any cue which would not have led to a correct response on the immediately

previous trial is excluded from the focus sample. The expected number of

cues remaining in the focus sample becomes the denominator of a new predictive

equation; the expected number of cues which would yield a correct response on

the next trial becomes the numerator of that equation. Therefore the follow-

ing probability is assigned for the n + 1 -th success conditional upon n

successes in a row following To :

x + (s - x)p
Tr(S

n+1
IS
n 1 0
...S E )

x + (s - x)pn
(2)

The Trabasso and Bower proof of (2) is brief and appears to be marred by use of

the expected operator approximation (Sternberg, 1963, pp. 40-47) without noting
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that the expected values just discussed should, after Tl have been condition-

alized subject to successes on all trials up to the point of any prediction. It

seems appropriate to make a more rigorous analysis of the consequences of

Trabasso and Bower's assumptions. We begin with an examination of specific

stimulus sequences.

2. Determination of Response Probabilities for All

Stimulus Patterns in a Three-Trial Sequence

The discussion below is dependent upon knowledge of a term from Cotton (in

press): Congruence (i) is defined as the number of dimensions, including

the relevant one(s) which is (are) consistent with the relevant dimension(s)

in changing value(s) from Trial n to Trial n + 1 when the relevant dimen-

sion(s) change(s) or in remaining constant when the relevant dimension(s)

remain(s) constant. (The possibility of two or more redundant relevant

dimensions is accommodated by the parenthesized s 's.)

On the n -th trial of a K -dimensional binary concept problem there

will be 2
Kn

possible branches reflecting different stimulus sequences of

stimuli which may have occurred on the n trials. Though 2Kn is much too

many branches to examine explicitly for large n , we can gain useful informa-

tion by examining a few trials fully in order to determine the possible states

of a Markov process and trans'Aion probabilities presumed to correspond to

the theory in question. Let us consider an example with K = 3 , one relevant

dimension ( Al should be followed by R1 and A2 by R2 ),and with (s) =

(A B
l' 1

C ) one of the acceptable focus samples of size 3 which could follow

an error on T
0

for the stimulus A
1
B
1
C
1

. We assume for the moment that

every one of the eight possible stimulus patterns is equally likely on each



trial, with patterns on pairs of trials having independent probabilities.

Under this assumption (and some less restrictive ones), complementary

stimuli A.B
k
C and A.,B

k'
C , with j / jr , k / k' , and 9, / 9' all

simultaneously holding as in the case of A1B1C1 and A2B2C2 , have equal

probabilities of appearance. Furthermore feedback following presentation of

one member of a complementary pair always confirms the same hypotheses which

feedback following the other member would confirm. Therefore, in the three-

dimensional case it will be sufficient to examine stimulus sequences involv-

ing a choice of four stimuli rather than eight. Table 1 shows the possible

sequences based on A1B1C1 , A1B1C2 , A1B2C1 , and A1B2C2 , together with

Insert Table 1 about here

congruence (i) values, the probability of a correct response (Pr) with

each stimulus at each stage, and the (s) values resulting from examining

(s) after each success and excluding.any dimension value which could have

led to an error on that trial. The reader may simply assume that one-half

of the events attributed to any stimulus are actually associated with its

complementary stimulus.

To read Table 1 easily, one should learn that congruence values (i) for

Trial 1 are represented by Roman numerals I, II and III, when cases are deline-

ated on subsequent trials. Case IIA and Case IIB differentiate i = 2 cases

which involve different stimuli yielding different foous samples. One or two

dots following a numerical specification of a case indicates that one or two

final trials, respectively, may be ignored as to specific stimulus history

because the final focus sample will be independent of that history. Thus for
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Case III 1 all focus samples include only the relevant cue following an

i = 3 trial and an i = 1 trial in that order.

Once Table 1 is known, we can use our assumption of equally frequent

stimuli to predict Pr(S11E0) with the following equation:

Pr(S1lE0) = E wt (Pr1)'
seq

(3)

where wt is the weight or probability of being in a certain sequence, Pr
n

is the probability of a correct response on Trial n (T
n

) for that sequence,

and the summation is over all sequences. It will be useful to call the right-

hand side of (3) by the name E Prod1 and to define:

Prod
n+1

= E Prod
n

(Pr
n+1

)

wt Pr1Pr2Prni-1

Pr(Sni-1S11E0) (4)

Note that Pr
2

times wt times Pr
1

is the probability of having suc-

cesses on both T
1

and T
2

during a certain stimulus sequence It might

seem reasonable to let E Prod
2

= E Pr
2
wt (Pr

1
) define the probability of

two successes in a row after an error without further manipulation. However,

the experimental design in question is one in which data on are notT2

analyzed for subjects making an error on T1 . Therefore, we must take into

account the number of subjects remaining for analysis on T2 i.e., Pr(S1lE0)

or E Prod1. Since
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E Prodn+1
)

Prodn
(6)

Table 2 presents the calculations of Pr(S114.11Sn...S1E0) for each trial

Insert Table 2 about here

of the example analyzed in Table 1. Once we determine the value of Trabasso

and Bower's p , we can check Table 2 results against (2). First, we empha-

size that p is not a response property as in Bower and Trabasso (1964);

rather, as the first quotation in this article implies, it is wholly defined

once the stimulus probabilities and the reinforcement rule are known. If

every irrelevant cue, such as B
1

, is exactly as likely to be paired with

Al as with A
2

in our example, then p = 2 . But our assumption of equal

probabilities for each possible stimulus pattern assures this equality.

Therefore (2) should hold, yielding the same probabilities as

Table 2. It does.

obtained in

3. A Matrix Formulation of the Focus Sample Problem

Examination of Table 1 suggests that a useful representation of the

process under study will result from classification into seven states, with

a revised organization leading eventually to four states. The seven states

are 1C (the probability of being correct is 1 and all cues in the focus

sample are correct); 1U3 (the probability of being correct is 1, but there

are three cues in the focus sample, not all of which are correct); 1U2 (like

1U3 but with two cues, not both of which. are correct); States 2/3, 1/2, and

1/3 having probabilities of being correct given by their designatiOnsi and
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the dropout State (D) having zero probability of a correct response because

the subject has made an error since T
0

and is therefore excluded from future

analyses.

It is easy to identify which state will be operative after a given

stimulus sequence by looking at a case number in Table 1 and examining the

probability values and (s) entries. Consider Trial 2, Case III: For i

values of 3, 2, and 1 a person is in 1U3, 2/3, and 1/3, respectively. Persons

making errors on Trial 2 because they are in States 2/3 or 1/3 will go into

State D on Trial 3 and stay there thereafter. However, persons who are cor-

rect on Trial 2 when in State 2/3 will go into State 1U2 or State 1/2 on Trial

3, depending upon whether the two cues remaining in their focus sample are

consistent or inconsistent with the next stimulus presented. Persons who are

correct when in State 1/3 on Trial 2 will go into State 1C on Trial 3 since

Table 1 shows that only Al will remain in their focus sample.

Rather than present a matrix for these seven states, we first expand

to 10 states by distinguishing between success (S) and error (E) substates

for the three states having fractional probabilities of a correct response.

This, together with examinations of, probabilities of reaching various points

in Table 1, yields the following initial vector:

1C 1U3 1U2 (2/3)S (2'3)E (1/2)S (1/2)E (1/3)S (1/3)E D

F*
1

[ 0 1/4 0 1/3 1/6 0 0 1/12 1/6 0]
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and transition matrix:

10

1U3

1U2

(2/3)S

R* = (2/3)E

(1/2)S

(1/2)E

(1/3)S

(1/3)E

D

10 1U3 1U2 (2/3)S (2/3)E (1/2)S (1/2)E (1/3)S (1/3)E D

(8)

1 0

0 1/4

0 0

0 0

0 0

1 0

0 0

1 0

0 0

0 0

0

0

1/2

1/2

0

0

0

0

0

0

0

1/3

0

0

0

0

0

0

0

0

0

1/6

0

0

0

0

0

0

0

0

0

0

1/4

1/4

0

0

0

0

0

0

0

0

1/4

1/4

0

0

0

0

0

0

0

1/12

0

0

0

0

0

0

0

0

0

1/6

0

0

0

0

0

0

0

0

0

0

0

0

1 .

0

1

0

1

1

Note that rows 10, (1/2)S, and (1/3)S of this transition matrix are identical;

also rows 1U2 and (2/3)S; also rows (2/3 )E '(1/2)E, (1/3)B, and D. By Burke and

Rosenblatt's (1958) Corollary 1 we can lump states having such identical rows

together, yielding the following 4-state model:

C U3 U2 E

P1 = [1/12 1/4 1/3 1/3] (9)
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C

C U3 U2 E

1 0 0 0

U3 1/12 1/4 1/3 1/3
R= (10)

U2 1/4 0 1/2 1/4

E 0 0 0 1

where C implies that a subject will be correct with probability 1 hereafter;

U3 means that a subject will be correct on the current trial but is still

unconditioned in that at least one of the cues in the focus sample is irrele-

vant; U2 means that a subject will be correct on the current trial but that

one of the two cues in the focus sample is irrelevant, and E means either

that an error will be made on the current trial or that the subject involved

has already dropped out of the analysis because of a previous error. The

proportion of subjects in the two sources of the E state can be determined by

finding the difference between the proportions in E on Trials n and n - 1 ;

the difference is the proportion of errors (out of all subjects) on Trial n .

We must now find an expression for Rn in order to obtain explicit

trial by trial predictions based on the well known relation:

p
n4.1

A method fran Goldberg (1958, pp. 229-231, and exercises 10 and 11, pp. 244 -

245) leads us first to find the characteristic roots of R from (9) by solv-

ing the following determinantal equation:
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where I is an identity matrix, obtaining Al = 1 A2 = 1/4 A3 = 1/2 ,

and A
4

1 . The Cayley-Hamilton theorem asserts that if f(A) = 0 as

required by (12), then f(R) using the same constants as in (12) but

replacing powers of A by corresponding powers of R will equal the null

matrix. In the present example, each equation will be a polynomial of the

fourth degree.

Now it is possible to write An in the form:

An = f(A) q(N) + r(A) (13)

where q(N) is of degree n - 4 since f(A) has degree 4 and r(N) has

at most degree 3, else r(A) could be factored by f(A) . Goldberg cites

a proof that the corresponding matrix equation holds as a consequence of (13):

Rn = f(R) q(R) + r(R) . (14)

Invoking the conditions defined by (12) and by the Cayley-Hanilton theorem

yields:

from (13) and f(A) = 0

= a
0
+

1

2
A.+ a + a3A3

= r(R) from (14) and f(R) = 0

since r(N) and r(R) must be of degree 3 or less.

(15)

16)



We must now solve for the coefficients from (15) and apply them to (16).

A slight complication arises because Al and 4 are equal, yielding three

independent equations, rather than four, from (15). Therefore, we differenti-

ate both sides of (15) with respect to N , for 4 = 1 :

""4
-1

a
1
+ 2a

2
A + 3a A

2_1n
3 4

(17)

Substituting the values of Al through 4 in (.15) or (17), as appropriate,

yields the following system of equations:

In a0 + al + a2 + a3

(1/4)n = a
0
+ al/4 a2/16 + a3 /6I

(1/2)n = a
0
+ a1/2 + a2/1 + a3/8

n = al + a
2
+ 3a

3

which can also be expressed in matrix form:

(c) = C(a)

(18)

(19)

(2o)

(21)

(22)

where (c) is the column vector on the left hand side of the set of

equations, C is the matrix of coefficients of the a. and (a) is a

is nonsingular; therefore, (22) implies:cohnualrectorofa.s.
0

Now inverting C yields:
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13 32 -36 -3

-88 -128 216 21

C-1 = (1/9) ( 24 )
164 160 -324 -42

-80 -64 144 24

from which (a) has been computed using (23) and has values equal to the

coefficients of the Rn terms below based on (16):

(1/9)[13+32(1/4) n_36(2) n- 3n]I + (1/9)[-88 - 128(1/4)"+ 216(2)11+ 21n]R

+ (1/9)[161+ +160(1/4)n- 324(2)"- 42r0R2 + (1/9)[-80 - 64(114)n+ 144(2)n+ 24/1]R3

(25)

We now need values of R
2

and R
3 so that (25) may be applied. By direct

calculation, from (10),

and

U3 U2 E

C 1 0 0 0

U3 9/48 1/16 1/4 1/2
R
2

=
U2 3/8 o 1/4 3/8

E 0 0 0 1

U3 U2 E

(26)



-13.-

For present purposes it is sufficient to calculate the last column of Rn

which will be called (Rn)4 . Use of (10), (26), and (27) in (25) leads,

after simplification, to:

C

U3
(Rn)4 =

U2

E 1

28)

We know from (11)-that the probability of being in State E on Tn
+1

is given

by:

P(En+1) Pl(Rn)4

= 2/3 - (1/3) in by (9) and (2.8).

But the probability of a success on Tri+1 is:

Pr(Sn+1) P(En+1)

(29)

= (1/3)(1 + in) from (29). (30)

We have just found the probability of a success on Tn+l
computed from

among all subjectS who made an error on To . To make this probability condi-

tional upon having been tested on T
n+1

we note that we are dealing only

with those subjects who were successful on T1 through T
n

and then were

also successful on T
n+1

. Therefore,:



Pr(Sn+1)

Pr(Sn+11SnS1E0)
Pr(Sn)

i
1 +

n
from (30). (31)

1 + in-1

But (31) is equivalent to (2) for x = 1 , s = 3 , and p = 2 , the condi-

tions operative in our example. Thus (2) has been verified for the focus

sample of Table 1 and equiprobable, independent stimuli.

Extension of the Matrix Formulation to New Focus Samples but the Same

Experiment

Trabasso and Bower (1968, pp. 59-60) assume that a subject selects a

focus sample by a replacement sampling method in which any one of the K

different dimensions has a specific probability of being selected as the first

member of the sample, and the same, independent probability of being selected

as the second, third, ... or K -th member of the sample. Consequently a focus

sample of size s will have from 0 to s elements from any particular dimen-

sion. The three-dimensional binary task with s = 3 which we have been con-

sidering has 10 distinct focus samples, ignoring order, and 27 samples when

order is considered. (Other focus samples would be possible if the stimulus on

T
0

were different. See Sec. 4.) Table 3 lists the 10 basic focus samples.

Insert Table 3 about here

Sample 10
1
,B
1
,C
1
) has already been investigated above. Hopefully a

single matrix proof could be developed for (2) which would hold for all 10

samples. Unfortunately Table 3 shows that the rank of the transition matrix



varies frcIn 1 to in the 10 samples under consideration. (In each case the

rank is also equal to the dimensionality of the matrix.) Therefore, we have

determined an initial vector P
1

and the matrix R for each asterisked

sample of Table 3, determined the form of R
n

, and verified that in each

case (2) follows from use of P1 and Rn in (11). By symmetry, (2) also

holds for each unasterisked sample.

Once (2) or some other equation is known to hold for a focus sample and

all possible focus samples have been investigated as above (with the possibil-

ity of some samples conforming to different equations or even different forms

of equations), the probability of solution of the problem can be determined

for each focus sample using (2.2) and the sentence following from Trabasso

and Bower (1968, p. 56) and a weighted average probability of solution can

be obtained from their (2.3) and (2.4) once one makes a saliency assumption,

i.e., specifies the probability of selecting each dimension for use in the

focus sample. An equal saliency assumption will, of course, make each of the

27 permutations of Table 3 equally likely.

How Many Trials Must be Examined to Identify the Different States for a

Problem with a Specific Focus Sample When s and K Are Large?

The matrix method just presented would be inconvenient if it were neces-

sary to consider all possible stimulus sequences and consequent focus samples

in a series longer than the three trials examined above. Suppose K is very

large, perhaps 15, and s is even larger, perhaps 20, implying that at least

one dimension is represented more than once in the original focus sample.

Will this make it, necessary to examine more than three trials?
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The query just posed may be answered by noting, first, that use of all

possible K -dimensional stimuli (excluding complements if desired) on Trial

1 will ensure that all possible combinations of dimensions are retained by

various subjects at the end of that trial, excluding possibilities in which

the relevant dimension was represented on Trial 1 but not afterward. Thus

there will be 1-tuples, 2-tuples, K-tuples represented in new focus samples,

with the label on a -tuple identifying the number of dimensions represented in

a sample, not the number of elements. Because starting with a multiple repre-

sentation of any dimension can be followed only by keeping all representatives

of the dimension or discarding all representatives, no new combinations of

dimensions can be produced after Trial 2. But use of all possible stimuli on

Trial 2 does enlarge the set of different (s) values by producing all pos-

sible consequences on any specific -tuple. Consequently Trial 3 will always

include all possible (s) values provided that all possible stimuli were

presented on Trial 1 and independently on Trial 2 as well.

4. The Case of. Constant Partial Relevance, and

Constant Predictability with Pr / .5

Suppose that, in the example given in Table 1, the four stimuli AiBiCi

A1 B1 C
2

, A1 B2 C
1

, and A1B2C2 , were assigned the probabilities .36, .24,

and .16 respectively, yielding Pr(B1(A1) = Pr(C11A1) = .6 , so that the

partial relevance, p was constant at .6. [Since the numbering system for

B
1

, B
2

C
1

and C
2

is arbitrary, reversal of numbers for B
1

and B
2

and for C1 and C2 would have yielded p = 1 - .60 .40 for each irrelevant

dimension. We adopt the convention of numbering each irrelevant dimension's

values so as to maximize each partial relevance, Pr(B11A1) Pr(Ci[ki)

19.
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etc.] Then Table 2 would require a new row of weight values, yielding differ-

ent values for Pr(S11E0) and related quantities. The new predictions would

conform to Eq. 2, showing another case in which Trabasso and Bower's equations

hold logically.

Fisher (in press) has shown that in general if the partially relevant

hypotheses in the focus sample are divided "into groups according to their

probability of producing a correct response (group i will have hi elements

each of which is associated with correct responding with a probability pi),"

x + Epihi

Pr(SliE0) x + Ehi

x + Epihi

(32)

which reduces to our Eq. 1 if p = z . Note that two dimensions, B and C

might have the same partial relevance, p , and yet have hypotheses with the

same partial relevance (p1 p2 p for CA B
l'

C
1

) or p
1

= p
2

= 1 - p

for Ch1,B2,C2) or different partial relevances (p1 = p , p2 = 1 - p for

{A1,B1,C2) ). Note also that the i of Eq. 32 is not the congruence value,

i , discussed earlier.

If pi = p2 = p Eq. 32 also reduces to Eq. 1, increasing the number of

cases in which Trabasso and Bower's conclusions hold. Eq. 2 will also hold

in this case, as well as when

A case in which Eq. 32 must be employed is easily illustrated by letting

the stimulus for To from Table 1 be. A1B1C2 . Since an error was made,

oneacceptable:focus Sample is (A1,B1,92} . An analogue of.Table 2 (not

presented) showa that Pi-(S 1E0) = -.667 , .Pr and
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Pr(S
3
IS
2
S
1
E
0

) = .842 , for a sequence of trials beginning with this focus

sample and p
1

= .6
'

p
2
= .4 based on the stimulus probabilities discussed

at the beginning of Sec. 4. In contrast Trabasso and Bower [our Eq. (2) with

p = .6] would have predicted Pr(S1lE0) = .733 , Pr(S21S1E0) = .782 , and

Pr(S31S2S1E0) == .833) .

Fisher's Sec. D gives the result:

h.

Pr(En4.1Sn...S11E0) = Ep7(1 - pi) ;2- '33)

where pi and hi are defined as in (32). Eq. (33) can be used to determine

Pr(Sn4.1Sn...S1IE0) or its equivalent from (4), E Prodn+1

Pr(S1.14.1Sn...S 1E0) + Pr(E1.14.1Sn...S11E0) = Pr(SnSII-1...S11E0) (34)

by elementary probability theory. Combining (4) and (34) yields:

E Prod
n+1

= E Prod
n

- Pr(E n+1 S
n
...S

1
IE

0
) . (35)

Since E Prod
1
= Pr(S

11
FE ) from (3) and the discussion following it,

(32), (33), and (35) permit a recursion to be performed in order to determine

the quantities required to apply (6) for any n .

The method just described may also be applied to the example with a

focus sample of LA1,B1,C21 . The two hi are each unity, pl (for the B

variable) is .6 and p
2

(for the C variable) is .4. Equation 33 yields

Pr(E2SlIE0) = .160 and Pr(E3S2S11E0) = .080. Equation 32 yields Pr(S1lE0) =

.667 ; and Eqs. (6) and (35) then imply Pr(S2IS1E0) .760 and Pr(S
3 2
IS S

1
E
0

)

.842 , these predictions-always eing_within .001 of those reported before

for an analogue of Table 2.
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5. Further Empirical Implications of the Trabasso-Bower Multiple Look Model

Redundant Relevant Dimensions

Trabasso and Bower developed their model for the specific purpose of

treating behavior in the presence of redundant relevant dimensions. The fore-

going analyses are in no way changed if we assume k redundant relevant

dimensions so that Al (A
2

) is always also accompanied by A'
1

(A52 )

A
1
(k-1)5

[A2
(k-1)5

J . There is no special advantage in discriminating which of

the x relevant cues in the initial focus sample comes from each relevant

dimension, so we may as well call them all Al as in Table 1. Any effect of

hav!..ng relevant redundant x dimensions will be reflected in modifications

of the probabilities of the different initial focus samples of size s . Thus

for Table 3, equal salience and a single relevant dimension would yield proba-

bilities of 1/3 for each cue to be sampled. Equal salience and k redundant

relevant dimensions would yield probabilities of 1/(k + 2) for each of the

two irrelevant cues and k/(k + 2) for each of the redundant relevant cues to

be sampled. Note that each i value in Table 1 is increased by (k - 1) if

there are k redundant relevant cues.

Specific Stimulus Sequences

Each of the columns, of Table 2 has Pr
1

and Pr
2

values giving the

probability'of a success on Tl and a subsequent success on T2 for specific

stimulus values presented in sequence, as well as Pr3 values giving the

average probability of success on T following the sequence of T1 and T
3 1

T2 ,

conditional on success on both previous trials. Tables 1 and 2 could be

expanded for larger n in order to treat longer stimulus sequences. However,

a more convenient method is t find a sequence, of matrices comparable to that
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of (10), with each one appropriate to the stimulus on a certain trial, applying

them in series:

pn +l =
P
1
RIR

T
2

R
Tn

(36)

where RT is the transition matrix appropriate to the stimulus change from

Tj to Tj+1 . This method of prediction is illustrated in detail in Cotton

(in press), using a single-look model.

A very severe test of the present model is suggested by examination of

Table 1 for congruence values (i) of 1: First, consider the case in which

x > 1 . Among all subjects who erred on T
0

and had i = 1 in Table 1 (or

had i = the number of relevant dimensions for a more general case) on T1 and

who were successful on T1 , none will keep an irrelevant cue on T2 because

no irrelevant cue placed in the sample focus on To can be consistent with the

relevant cue(s) on T
1

, by the definition of congruence. Thus none of the

subjects with this history will ever again mke an error on this problem.

Now consider the case in which x = 0 . For example; let the stimulus on

T
0

be A
1
B
1
C
1

and (s) = (B B
l'

C
1

) be the focus sample selected to be con-

sistent with reinforcement of R
1

on T
0

, with A being the relevant dimen-

sion. On T
1

, for which i = 1 the B and C dimension values on T
1

will both be inconsistent with the value of the A dimension on T
1

. There-

fore the probability of a correct answer on T1 will be zero. This conclusion

holds for any case in which x = 0 - Consequently, all subjects who err on To ,

have i = the number of relevant dimensions on T and are successful on T
1

,
1-4

will be errorless ever after, according to the multiple-look model. This implica-

tion can be expanded to permit the i = 1 successful trial to occur after Tl

we do not examine the logic of that case here. Failure of this prediction

23
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is equivalent to failure of a strict "local consistency" theory (Gregg & Simon,

1967).

We do not know of a published set of data bearing upon this prediction.

However, Pyle (1969) performed two experiments in which his Group 1 had

i = 1 on Trial 2 and on all subsequent trials except those numbered with

multiples of 5. Raw data kindly provided by Pyle show that in Experiment 1

only 12 of 18 subjects with a success on an i = 1 trial following an error

made no further errors. The corresponding result for Experiment 2 was 20 out

of 31.

Cotton and Rhone (1970) have performed an experiment in which Group 1 has

the same i values as in Pyle's two Group l's. Among 23 subjects in Cotton

and Rhone's Group 1, 18 had an error on To and a success on Tl , for some

arbitrary T
1

not equal to a multiple of 5. Of these 18, 9 made no further

errors in the 24-trial sequence given all subjects. Thus 9 out of 18 subjects

exhibited behavior flatly contradicting the strong prediction just derived from

the multiple-look model.

It is easy to show that the prediction of errorless performance once a

correct response is given with i = number of relevant dimensions (assuming an

error on the previous trial) also follows from Trabasso and Bower's (1968, pp.

219-226) modified multiple-look model. That model assumes that, following a

correct response, the subject has probability b of excluding inappropriate

hypotheses on the same basis as the original model and probability 1 - b of

excluding them but resampling from locally consistent hypotheses in order to

keep the size of s constant. The hypothesis which has been in the focus

sample for the greatest number of correct trials is called the dominant hypoth-

esis and will control the response on any given trial. Since the i = number
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of relevant dimensions condition assures that the correct hypothesis or hypoth-

eses will be the only one(s) in (s) on T
1

which were also confirmed on the

error trial To previous to resampling, the correct hypothesis or hypotheses

will be the only one(s) in (s) on T1 which were also confirmed on the

error trial T
o

, previous to resampling, the correct hypothesis or hypotheses

will be the dominant one(s) on the next trial, will again be confirmed and

still be dominant, etc., assuring no subsequent errors.

Prediction of the Distribution of Runs of All Successes or All Errors

Trabasso and Bower (1968, pp. 55-56) derive an equation for the probability

of a run of n successive successes following an error: Pr(H = n) = (1 - p)p
n

.

For all focus samples for which Eq. 2 holds, Trabasso and Bower's formula for

Pr(H = n) stands as given. Since this formula does not depend directly upon

either x or s a subject could shift from one acceptable focus sample to

another following each error (as he is assumed to do by the theory) and yet

the same equation would hold throughout his session, permitting calculation of

a variety of run statistics such as those presented in Bower and Trabasso (1964)

for a single -look model. We emphasize a point inherent in Trabasso and Bower's

discussion: The case s - x = 0 is acceptable for a focus sample because it

will produce learning, making Pr(H = co) = 1 at the end of the experilLent.

However, this serves to emphasize that the learning parameter, x/s defined

in their (2.2), is most assuredly not constant within a session for a single s

but rather ranges from 0 when x = 0 to 1 when x = s ,

For the general 'case, Fisher (in press) has shown that Pr(H = n)

.

r

i
,api.1(1 - p.)hJ using the same notation as in Eq. 32. This equation

Eh

reduces to the Trabasso and Bower result for any case in which Eqs. 1 and 2
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hold. A final thought about this general case: One error may occur in

response to A1B1C1 as in Table 1; the next error may occur in response to

A
1
B
1
C
2

as in our later example, so that Pr(H = n) must be computed separ-

ately for each case because the
pi

values will not be constant throughout

the experiment even though the partial relevance of any cue is constant.

Introduction of sampling schemes for focus samples, as in Trabasso and Bower

(1968, pp. 57-60) must receive careful mathematical analysis since this

problem of shifting pi values has not previously been noted.

6. Summary

Two methods of deriving predictions for the Trabasso and Bower multiple-

look concept identification model have been examined. A method of directly

calculating the effects of every possible stimulus sequence is practical only

for small numbers of trials'and must be used separately for each possible

focus sample of a given size. However, it can be employed for cases of par-

tially relevant cues, redundant relevant cues, and a single stimulus sequence

for all subjects. This method reveals a very strong implication of the model:

Among subjects who make an error on some trial To and who are correct on the

immediately subsequent trial for which the congruence must be equal to the

number of relevant dimensions, there will be no further errors. Existing data

on this point contradicts the theory.

A matrix method of proof is applicable for all trial numbers and is other-

wise comparable to the first method. Use of the first method for three trials

will normally be necessary to determine the appropriate transition matrix,

which varies from one focus sample to another.



This paper also discusses Fisher's demonszration that certain Trabasso

and Bower equations sometimes fail to hold if p / .50 . Her conclusions

are shown to imply a general procedure for calculating the probability of a

success on Trial n given success on all previous trials since an error on

Trial 0.
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Table 3

Listing of All Possible Initial Focus Samples in a Three-Dimensional

Problem with s = 3 , S =
A1B1C1

on To , and Dimension "A" Relevant

Focus
Sample (s) x

No.

Permutations

Rank of
R Matrix

1* LA
l'
A
1'
A
1

) 3 1 1

2* (B B B
1

) 0 1 2

3 fc c c
1

I 0 1 2

4* (BV B
l'

C
1

) 0 3 4

5 031,c1,c1) 0 3 4

6* (A1,A1,B1) 2 3 3

7 CA.
l'
A
l'

C
1

) 2 3 3

8* (A
l'
B
l'
B
1) 1 3 3

9 LA1' C 1' C
1

) 1 3 3

10* (A B C
1

) 1 6 4

Sum 27

*By symmetry, any unasterisked sample behaves like the
asterisked sample above it. Only asterisked samples were

explicitly investigated.
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